

Realisation documents

Internship project

Jelle Van Langendonck and Amber Swevers

Table of Content

REPORTS .. 3

1. DESCRIPTION ... 3
2. FRONT-END ... 3

Language/framework .. 3
Components ... 3
Getting started ... 4
Screenshots .. 4
Dependencies ... 8
AMCharts ... 8
pdfmake ... 8
Additional features .. 8
Scheduling .. 8
Datepickers .. 8

3. BACK-END ... 8
Server ... 8
Language/framework .. 8

METABASE DASHBOARD .. 9

1. DESCRIPTION ... 9
2. COMPONENTS.. 9

Language/framework .. 9
3. EXAMPLES ... 10
4. DASHBOARD .. 12

Language/framework .. 12
Examples .. 12

SNAPSHOT TCO CALCULATOR .. 13

1. DESCRIPTION ... 13
2. FRONT-END ... 13

Language/framework .. 13
Input ... 13
Output .. 13
Examples .. 14
Dependencies ... 15
AMCharts ... 15

3. BACK-END ... 15
Server ... 15
Language/framework .. 15
Calculations .. 16

Reports

1. Description

In this document we will describe the technical implementation of the project. This will be done in 2

parts, firstly the front-end and then the back-end.

We’ve built an engine to generate and download reports as a PDF file. The engine is equipped with a

drag and drop system. The client can drag components (e.g. graphs, charts, tables, text, etc.) and

choose which information is shown. There are also pre-defined templates that can be generated

with static content. The client also has the possibility to save the custom templates they’ve built and

regenerate them later.

2. Front-end

Language/framework

The front-end framework used in this project is Angular. Angular is an application design framework

and development platform to efficiently create single-page applications.

Components
This is a single page application built with many different components. Below is a tree that shows

how the different components are nested and what they are used for.

• app.component

o rps-template.component: loads the Resource Protection Status template

o rbs-template.component: loads the Resource Backup Status template

o rrs-template.component: loads the Resource Restore Status template

o custom-template.component: contains the components to build a custom template

and builds the PDF

▪ custom-template-preview.component: shows a preview of the custom

template the user has built

• piechart.component: loads the different pie charts into the custom

template

• overview.component: loads the different tables into the custom

template

• linechart.component: loads the different line charts into the custom

template

• barchart.component: loads the different bar charts into the custom

template

• header.component: loads the different headers into the custom

template

• logo.component: loads the logo into the custom template

Getting started
In order to use the application you must complete the following steps.

1. Open a terminal in the root of the project

2. Type ‘npm I’ to install all the dependencies

3. After the depencies have finished installing, type ‘ng serve’ to start the Angular app

4. Open a second terminal in the root of the project

5. Type ‘node server.js’ in the second terminal to run the backend of the application

6. Open your browser of choice and navigate to ‘lhttp://ocalhost:4200’. This will show you the

page.

a. If that port is currently in use, the Angular will run the application on another port.

Check the terminal to determine which port is being used.

Screenshots

1. Screenshot of page with the Custom Template starting screen.

2. Starting page with components dragged in

 3. The generated PDF

4. Starting page with the pre-defined Resource Protection Status template

Dependencies

AMCharts
Used to create the charts and graphs.

pdfmake
 Generates the PDF’s.

Additional features
There are a few features that will be added in the future by Druva CloudRanger employees. These

features were out of scope for our project.

Scheduling
The main feature that will be added after be conclude our internship is adding a scheduling option.

With this feature, users will be able to auto-generate their reports daily, weekly, monthly, etc.

Datepickers
We have added datepickers to our project, but they are non-functional for the time being. This was

not a priority for us since we are less familiar with the API than the CloudRanger engineers. The

datepickers will be used to give users the possibilities to look at data from a specific period.

3. Back-end

Server
The backend will be hosted on AWS. AWS is a service that provides on-demand cloud computing

platforms and APIs to individuals, companies, and governments, on a metered pay-as-you-go basis.

Language/framework
The backend is written in Node.js. Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript

engine. The backend is solely used as a contact point between the API and the frontend and

therefore can be made redundant by calling the API directly from the frontend.

Metabase dashboard

1. Description

In this document we will describe the technical implementation of the project. This will be

done in 2 parts, firstly the components and then the dashboard.

2. Components

Language/framework

For this project we need to build a dashboard consisting of multiple components, these components

are build directly in Metabase with simple SQL queries.

for this project we need to create these components:

-Account active check

-Organization subscribed check

-Amount of policies the organization has

-Amount of schedules the organization has

-Expiration date of subscription

-Amount of servers last 30 days

-Amount of accounts

-Amount of members

-Days since trial

-Kind of billing plan

-List of succesfull and failed jobs

-List of accounts

-Piechart account credential status (successfull/not configured)

-List of account credentials

-Piechart Jobtypes

-Piechart amount of jobs (succesfull/failed)

-Piechart Restoretypes

-List of Jobs

-List of failures

-Region map of amount of backups

-Piechart backups per region

-Linechart amount of servers during the last 30days

-Linechart amount of servers during the last 6 months

3. Examples

5 Component List Jobs (failed/successfull)

6 Piechart amount of jobs (failed/successfull)

7 Region map amount of backups

8 Linechart amount of servers during the last 6 months

4. Dashboard

Language/framework
The dashboard will also be build directly in Metabase with the drag and drop builder it provides.

With this we can drag and drop the components we created and layout our dashboard. Also can we

connect a mail input to the components.

Examples

9 Example of dashboard

10 Example of dashboard

Snapshot TCO calculator

1. Description

In this document we will describe the technical implementation of the project. This will be

done in 2 parts, firstly the front-end and then the back-end.

2. Front-end

Language/framework

The front-end used in this project is HTML5 with CSS3 and JavaScript, HTML5 is a mark-up language

used for structuring and presenting content on the World Wide Web. While CSS3 is a style sheet

language used for describing the presentation of a document written in a mark-up language like

HTML5. And JavaScript is used to make the content generated by the mark-up language interactive.

Input
We need to be able to create a input for the back-end consisting of variables that it will use to

calculate the different costs. This inputs needs to consist of at least:

-instanceCount: the amount of instances the client has running on Amazon.

-volumeSize": How large the instances are in Gigabyte.

-chosenRegion": On what region are these instances running.

-retentionDailySnapshots": How many daily snapshots the client wants to save.

-retentionWeeklySnapshots": How many weekly snapshots the client wants to save.

-retentionMonthlySnapshots": How many monthly snapshots the client wants to save.

-retentionYearlySnapshots": How many yearly snapshots the client wants to save.

-dailyChangeRate": How much the overall instance changes daily.

-weeklyChangeRate": How much the overall instance changes weekly.

-monthlyChangeRate": How much the overall instance changes monthly.

-yearlyChangeRate": How much the overall instance changes yearly.

All this data will be inserted by the user with a HTML form where after the user presses submit the

frontend will compile all inserted data to JSON and proceed to send it to the backend hosted on

AWS.

Output
After the backend is done calculating it will return the calculations and with this data the frontend

converts it to JSON and starts creating the charts with help of the AMCharts dependency. Afterwards

it takes a screenshot of the chart and transform the received data and chart into a workable PDF

that can be downloaded if necessary.

Examples

11. Screenshot of HTML form with corresponding output chart.

12. Screenshot of generated PDF.

Dependencies

AMCharts
Used to create the charts and PDF.

3. Back-end

Server
The backend will be hosted on AWS. AWS is a service that provides on-demand cloud computing

platforms and APIs to individuals, companies, and governments, on a metered pay-as-you-go basis.

Language/framework
On AWS we will be hosting a small python script on a Flask server. Flask is a micro web framework

written in Python that does not require particular tools or libraries.

Calculations
With the data received from the front-end, the script will calculate:

totalYearlyCostsEbs: The total yearly costs of all EBS snapshots.

dailyCostsEbs: The daily costs of all snapshots if only saved on EBS.

weeklyCostsEbs: The weekly costs of all snapshots if only saved on EBS.

monthlyCostsEbs: The monthly costs of all snapshots if only saved on EBS.

yearlyCostsEbs: The yearly costs of all snapshots if only saved on EBS.

totalYearlyCostsEbsS3: The total yearly costs of all EBS and S3 snapshots.

dailyCostsEbsS3: The daily costs of all snapshots if saved on EBS and S3.

weeklyCostsEbsS3: The weekly costs of all snapshots if saved on EBS and S3.

monthlyCostsS3: The monthly costs of all snapshots if saved on EBS and S3.

yearlyCostsS3: The yearly costs of all snapshots if saved on EBS and S3.

baseCostS3: The base cost of storing snapshots on S3

totalYearlyCostsS3: The total yearly costs of all S3 snapshots.

totalMonthlyCostsEbs: The total monthly of the first year costs if only saved on EBS.

totalMonthlyCostsEbsS3: The total monthly costs of the first year if saved on EBS and S3.

totalMonthlyCostsS3: The total monthly costs if only saved on S3.

processingCostsEbsS3: The total processing costs of transferring EBS snapshots to S3.

processingCostsS3: The total processing costs of transferring snapshots directly to S3.

baseCostEbs: The base cost of storing snapshots on EBS.

dailyCostsS3: The daily costs of all snapshots if saved on S3.

effectiveDailySnapshots: The effective amount of daily snapshots.

effectiveWeeklySnapshots: The effective amount of weekly snapshots.

effectiveMonthlySnapshots: The effective amount of monthly snapshots.

effectiveYearlySnapshots: The effective amount of yearly snapshots.

adjustedWeeklySnapshots: The adjusted amount of weekly snapshots.

adjustedMonthlySnapshots: The adjusted amount of monthly snapshots.

adjustedYearlySnapshots: The adjusted amount of yearly snapshots.

